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Supplementary Information 
 

I - Sidestream Dark Field and Laser Speckle Contrast Imaging (SDF-LSCI) set up  

 

To enable absolute blood flow measurements and estimation of τc of the same in vivo vessels we modified a clinical 

microcirculation imager (Microscan, Microvision Medical, The Netherlands) to allow illumination by different light 

sources1. The conventional system provides illumination by six green LEDs at the tip of the lens tube, which were 

replaced by four optical fibres (POF ESKA, fibre core 980 μm, NA 0.5). The fibres are directed through the imager 

alongside the lens tube, which is covered with a sterile cap and can be brought into contact with the tissue of interest. 

In SDF-LSCI mode, as is shown in Supplementary Fig. 1, laser light (632.8 nm, He/Ne, Spectra Physics, US) is split 

into four beams by three 50:50 beam splitters and coupled into the four multimode fibres. Raw speckle frames with 

different exposure times are captured by a monochrome camera at 30 frames per second (IEEE 1394, Guppy F-080B, 

Allied Vision Technologies, Germany), controlled by self-written software (LabVIEW, National Instruments, US). 

For exposure times above 33 ms obviously the frame rate is less. Overexposure is prevented by a neutral density 

filter wheel in front of the laser. In conventional SDF mode the fibres are illuminated by four LEDs (530 ± 20 nm). 

Conventional SDF images show good contrast between tissue and highly absorbing red blood cells (RBCs). 

Conventional and SDF-LSCI mode were consecutively employed to image the same microcirculation area. The focal 

plane can be translated between tissue surface and 0.4 mm depth and the optical magnification is 5x.  

 

 
 

Supplementary Fig. 1 | Dual-mode non-invasive microcirculation imaging set-up. SDF-LSCI mode: speckle 

contrast due to reflection of coherent laser light by flowing RBCs and 'static' tissue. Conventional SDF mode: 

contrast due to absorption of green light by flowing RBCs. See text above for more details.  
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II - Flow chart for quantitative laser speckle flowmetry  
 

 

Supplementary Fig. 2 | Flow chart for quantitative laser speckle flowmetry. This work discusses the 

sequential steps, theoretical model and practical procedure to quantifying blood flow velocities in vivo 

using laser speckle contrast imaging (LSCI). This flow chart serves as a guideline for the reader.  
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III – Theory  

 

IIIa - Optical and physical properties of the dynamic medium 

We briefly review the optical properties relevant to our application. We model our phantom and tissue as a discrete 

random medium of hard spheres (i.e. occupying non-overlapping volumes). The differential scattering cross section 

σsca(q) describing the angular distribution of scattered light by a single sphere, is calculated using Mie (M) theory2. 

Here q=kscat–kin is the scattering vector with magnitude |q|=2ksin(θ/2); k is the wavenumber 2π/λ and θ is the 

scattering angle. To account for inter-particle correlation effects (“dependent scattering”), we calculate the structure 

factor S(q) using the Percus-Yevick (PY) equation3 for hard spheres4. The scattering coefficient µs, cross section σsca 

and scattering phase function p(q) are then found, respectively, as:  
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Here η = fv/Vp is the particle number density in the medium; with fv the volume fractions of particles with volume Vp. 

The structure factor is given by the Fourier transform of the pair correlation function PCF(r) which is interpreted as 

the distribution of distances r between particle pairs. For dilute solutions of hard spheres of diameter D, PCF(r) = 0 

when r < D and unity otherwise. For higher volume fractions PCF(r) shows damped oscillatory behaviour, with 

increased probability of finding pair separations at multiples of D and decreased probability in between. In the limit 

r; PCF(r) goes to unity. The structure factor S(q) is approximately constant at unity for low volume fractions. 

Non-unity S(q) at higher values of fv cause an angular redistribution of scattered light (Supplementary equation (1b)) 

as well as non-linear scaling of the scattering coefficient. Analytical forms of sca,MIE(q) and SPY(q) are not available 

but may be computed by algorithms published in ref. 2 for Mie theory and ref. 5for Percus-Yevick, respectively.  

IIIb - Dependence of τC on the optical properties of the dynamic medium 

Consider an ensemble of scatterers (indexed j) each moving with velocity Vj in a vessel within an otherwise static, 

scattering medium. The velocity distribution is given by p(V). The normalized electric field autocorrelation (ACF) 

function g1(τ) = E(t+τ)E*(t)/|E(t)E*(t)|2, for a single scattering event from moving particles is6: 

    1,single , exp j
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When light undergoes many scattering events before reaching the vessel, the propagation direction becomes 

isotropic. Consequently, the direction of the scattering vector q with respect to the velocity vector V also becomes 

isotropic, and the velocity distribution depends only on the magnitude |V|=V. We assume a Gaussian-shaped speed 

distribution p(V) = √(2/) (3/V0)3/2 exp(–3V2/2V0
2); where V0 is the average flow velocity. Averaging over p(V) 

yields6-8:  

    2 2 2
1,single 0exp / 6g V  q, q   (3) 

In the following, we drop the subscript ‘0’ on velocity. The average over q is calculated as: 
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The angular weighting by the phase function of Supplementary Equation (1b), introduces dependence on the optical 

and physical properties in g1 (and thus in C).  

 

IIIc Multiple scattering 

Supplementary equation (4) describes the electric field decorrelation due to single scattering events. If subsequent 

scattering events are assumed to be statistically independent, the ACF becomes [g1()]n where n is the number of 

scattering events from moving scatterers. The total correlation function follows after weighting with the appropriate 

distribution of n: 
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Because the scattering events take place at the particles, the distribution pN (n) in the measurement volume follows 

the microscopic distribution of the number of particles pN(ηmicr) in the dynamic medium. If the particles positions are 

independent of each other, pN (ηmicr) and pN (n) are given by the Poisson distribution9, with equal mean and variance 

of ηmicr = σ2
ηmicr = η (the global average density); and of n = σ2

n = N, respectively. When correlations between the 

particle positions are present, e.g. when PCF(r)1, the Poissonian distribution model is no longer valid. Although the 

exact distribution is unknown, the relation between mean (N) and variance (σn
2) is determined by the PCF as10,11: 
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Where the right-hand side is valid for the PY equation of PCF(r) for hard spheres. In our present analysis, we assume 

pN(n) follows a normal distribution where the relation between mean and variance is given by Supplemenatary 

equation (6). Here, 
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Parameter N is estimated from Monte Carlo simulation of our experimental geometry (Supplementary Section IV) 

The ACF g1(τ) is an exponentially decaying function of time, parameterized by the characteristic timescale τc 

(decorrelation time) which is evaluated from 6,9: 

  1
0

c g d  


    (8) 

Following the above outlined exercise, g1 can be plotted according to the set of optical and physical properties 

(including N) and the proportionality constant α can be derived as 1/τc at V = 1. The ACF calculated using the above 

formulae is of Gaussian form (because all involved functionals, i.e. phase function, velocity distribution and 

distribution of the number of scattering events, are of (near) Gaussian shape). In the following, we therefore assume 

that g1(τ) = exp(–0.25(τ/τc)2) for mathematical convenience of the procedure to extract c from spatial speckle 

contrast measurements (Supplementary Section IIId). The validity of this approximation is discussed in 

Supplementary Section XI. 

 

Our aim is to quantify the relationship 1/τc = αV in vivo.  For microcirculatory blood flow, the measured τc can be due 

to scattering from a single flowing RBC (supplementary equations (4) and (7)) or from multiple flowing RBCs  

(supplementary equations (5) and (7)), referred to as τc,1 and τc, for single and multiple scattered light, respectively. 
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Thus, α relating V to τc also needs to reflect single, α1, or multiple, α, scattering. As a practical approach we introduce 

the rescaling factor A(N), defined as:  
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The functional dependence of A(N) on N for human blood is plotted in Fig. 2 (Article) and Supplementary Fig. S5 for 

chick embryo blood. The general formula relating V to τc then becomes 1/τc = α1Α(N) V. 

 

IIId - Spatial assessment of temporal speckle dynamics 

Laser Speckle Contrast Imaging (LSCI) assesses sample dynamics from spatial measurement of speckle contrast, 

defined as the ratio of the standard deviation (σi) to the mean (<I>) of the intensity:   

 iK
I
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This quantity is related to sample dynamics through temporal integration of the ACF g1(τ) as obtained from 

Supplementary equation (5)9:  
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Here, T is the exposure time of the camera and βM is a measurement-geometry specific constant that can be 

calibrated1. In the general case of flow in a single vessel or channel, g1(τ) is assumed to have a Gaussian form 

g1(τ) = exp(–0.25(τ/τc)2) as described in Supplementary Section Ic. For Brownian motion, g1(τ) takes an exponential 

form (corresponding to a Lorentzian lineshape): g1(τ) = exp(–(τ/τc)). A sampled biological tissue volume likely 

consists of both static and dynamic scatterers. The influence of the static component on g1(τ) can be taken into 

account12-14 by introducing a dependence on 𝜌 = 𝐼𝑓 (𝐼𝑓 + 𝐼𝑠)⁄ , with If the detected intensity of the fluctuating 

scattered light and Is the detected intensity of the light scattered by static components. The speckle contrast 

Supplementary equation (11) can be solved analytically for the Gaussian form of g1(τ) to give12,13:  
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where x = T/2τc,total and Cnoise an added noise term for measurement noise. For our determination of τc,total, we fit 

the model of Supplementary Equation (12) to measurements of K obtained with different exposure times as detailed 

in Methods. The definition of x differs a factor /2 from other publications1,15,16 in which g1(τ) = exp(–(τ/τc)2) is 

used – a form that is incompliant with our Supplementary Equation (8). In biological tissue τc,total represents the total 

decorrelation due to contributions from 'offset' (e.g. muscle movements) and the desired flow dynamics.  
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IV - Monte Carlo simulations to estimate N  

 

To get a reliable estimate for the number of dynamic scattering events, N, we built the geometry in Monte Carlo 

simulation freeware17,18, and included the scattering coefficients of the static phantom and dynamic polystyrene 

spheres for all sizes and volume fractions (see Supplementary table 2), as shown in Supplementary Fig. 3. Photon 

transport was simulated for one fibre, and the results were rotated 90, 180 and 270 degrees to mimic 1 fibre in each 

corner. In this set-up the optical absorption is low and can be ignored. The simulated detection area faithfully 

represented the Microscan detection geometry, and only photons within the imaging NA were included for further 

analysis. The number of dynamic scattering events are stored per detected photon. We simulated 5000 dynamic 

photons (thus photons with at least 1 scattering event in the flow tube) detected at the centre of the tube region in the 

field of view (mimicking the experimental image analysis) and calculated the average number of dynamic scattering 

events, N, per dynamic photon. The relationship between µs and N could be linearly fitted by N = 1.2µsd, (r2 = 0.99) 

for 15 different simulations with µs ranging from 20 - 150 mm-1 and d the tube diameter of 0.2 mm (see 

Supplementary Fig. 3b). The factor F = 1.2 [95% upper CI - lower CI: 1.21 - 1.26, CI confidence interval] is likely 

due to an increased effective optical path length as a result of scattering, photons crossing the tube with a 

longitudinal component, and photons crossing the tube more than once. For low µs (< 20 mm-1) the factor was 

slightly higher (< 1.9), due to a low number of scattering events in the tube (N < 5) and subsequent overestimation of 

the photon path through the tube. We therefore fixed the factor at 1.2 for all µs and this specific d of 0.2 mm.  

 

 
 

Supplementary Fig. 3 | Monte Carlo geometry and simulation in vitro. (a) To mimic the SDF geometry a 

diverging beam is located at ~1 mm distance from the detector field representing a high NA fibre and photons are 

launched into the static medium (TiO2 in silicone). The flow tube with optical properties for polystyrene spheres is 

placed in the medium (diameter 0.2  0.03 mm; depth 0.3 mm  0.03 mm). The simulation results are rotated to 

represent a fibre in each corner. For each photon detected at the centre of the tube (in the detector plane) the number 

of dynamic scattering events N is counted, and the average N per detected photon is plotted versus scattering 

coefficient in (b), as well as a linear fit to the data (dashed line).  

 

 

The number of scattering events in the in vivo vessels was also estimated using Monte Carlo simulations with the 

same imaging and detection geometry as shown in Supplementary Fig. 3. To reduce computation time we adopted a 

different method as compared with the flow phantom: since whole blood and soft tissue have comparable reduced 
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scattering coefficients19, we simulated the photon paths in a medium with constant µ's = 1.7 mm-1 and recorded all 

coordinates (x,y,z) of each scattering event along the path from illumination fiber to detector element. Next, we 

placed virtual vessels of different diameters inside the medium and calculated for each detected photon the number 

of scattering events N that had taken place within the vessel volume. Upon inspection, the value of N was robust for 

different locations and depths of the vessel within the field-of-view and focal plane maximal depth (400 μm) and 

mainly depended on the vessel diameter. In addition, the pixels within 1.5× the diameter of the vessel recorded 

similar values of N. Thus, by placing the virtual vessel at several locations in the medium and obtaining N for pixels 

within a certain distance from the vessel center a statistically valid value for N could be found within reasonable 

computational time. We verified that the results obtained using this approach gave similar results as when a true 

vessel geometry was simulated. The optical properties of human blood were obtained from a review by Bosschaart et 

al.20. We calculated the optical properties accordingly, taking into account a reduced microcirculatory hematocrit 

(Hct) as a result of the Fahraeus effect21 (average microcirculatory Hct = 30%, see Supplementary table 1), for a 

range of vessel diameters [0.02 - 0.4 mm]. The resulting N can be described by N = (0.92d+0.92)µsd, with d in mm 

and µs = 95 mm-1. For chick embryo whole blood no experimentally validated optical properties were found, 

therefore, we estimated the optical properties using the known red blood cell volume 22 and hematocrit 23 calculated 

using Mie scattering and Pervus-Yevick theories2,4, see Supplementary table 1. Inserting these value into the Monte 

Carlo geometry resulted in N = (0.68d+0.92)µsd, with µs = 86 mm-1. To find N the in vivo vessel diameters can be 

estimated from conventional SDF images.  

 

To generalize our results, we simulated two other scenarios: 1. N for vessels with full hematocrit (Hct = 45%) and 2. 

N for a common LSCI system geometry. In most LSCI systems, the laser light illuminates the tissue at a 45º angle 

and the detector is placed perpendicularly above the tissue. For all situations similar values for N were found, as is 

plotted in Supplementary Fig. 4 below.  

 

 

Supplementary Fig. 4 | In vivo scattering events from Monte Carlo simulations. The average N per detected 

dynamic photon for a range of vessel diameters was obtained from Monte Carlo simulations using in vivo optical 

properties for human (Hct 30% (yellow circles) and Hct 45% (green triangles)) and chick embryo (Hct 22% (red 

squares)) blood, see Supplementary table 1. In addition, N was simulated for a common LSCI system where the laser 

beam is directly illuminating the tissue at a 45º angle and the camera is placed perpendicularly above the tissue (blue 

upside down triangles). Polynomial curve fits are plotted as dashed lines and the fit coefficients are displayed (all r2 

> 0.99).  
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V - Optical properties of scatterers 

 

Supplementary table 1 and 2 list the optical properties of scatterers used in the in vivo and in vitro experiments. To 

estimate the error in theoretical α we varied the size of the polystyrene spheres by ±10% and the refractive index by 

±5%, as this variation was reported for the purchased polystyrene spheres (Kisker-Biotech, Germany) 24. For the red 

blood cells (RBCs) we varied the size by ±5% and refractive index by ±1%. 

 

Table 1. Optical properties of scatterers at 632.8 nma 

 
Refractive 

index particle 

Refractive 

index medium 

Scatterer 

diameter 
Vol % 

Scattering 

coefficient 
gb 

Human blood, 

microcirculation 
nRBC = 1.3937c nplasma = 1.345c 5.6 µmd 30% µs,blood = 95 mm-1 0.991 

Human blood nRBC = 1.3937c nplasma = 1.345c 5.6 µmd 45% µs,blood = 93 mm-1 0.986 

Chick blood, 

microcirculation 
nRBC = 1.3937c nplasma = 1.345c 7.1 µmd 22%e µs,blood,chick = 42 mm-1 0.993 

TiO2 in silicone nTIO2 = 2.49f nsilicone = 1.4225f ~0.2 µmf 
0.0265% 

(1 mg/ml) 
µs,phantom = 4.1 mm-1 0.58 

Polystyrene 

spheres 
nsphere = 1.5872 nwater = 1.332 

see Suppl. 

table 2 

see Suppl. 

table 2 
see Suppl. table 2 

see Suppl. 

table 2 

a Calculated using Mie and Percus-Yevick theory25. b Anisotropy (g) is the average cosine of the scattering angle. c See 

ref 20. d Calculated for an equivolumetric sphere with the same volume as an human/chick RBC20,22 e See ref. 23 f See 

ref. 26. 

 

 

Table 2. Optical properties of polystyrene sphere solutions in water at 632.8 nma 

Size series    Volume fraction series 

2.5 vol%   1 µm  2 µm  5 µm 

Db µs
 c gd   vol% µs

 c gd  vol% µs
 c gd  vol% µs

 c gd 

0.6 63 0.848   0.64 24 0.917  1.9 45 0.912  1.1 6.9 0.864 

1 89 0.914   0.83 31 0.917  2.5 58 0.911  1.5 9.4 0.864 

2 58 0.911   1.2 44 0.916  3.5 80 0.909  2.5 15 0.862 

5 15 0.862   2.5 89 0.914  4.4 98 0.908  4.1 25 0.859 

7 13 0.918       5.5 120 0.906  6.9 40 0.854 

10 7.5 0.899       6.9 147 0.903     
aCalculated using Mie and Percus-Yevick theory25. bD is diameter in µm. c µs in mm-1. 
dAnisotropy (g) is the average cosine of the scattering angle. 
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VI - Multiple scattering scaling factor for chick embryo blood 

 

 
 

Supplementary Fig. 5 | Multiple scattering scaling factor for α, Α(N), for chick embryo blood. A(N) =  /1,  is 

plotted versus multiple scattering events, N, in chick embryo blood calculated using our model based on Mie-Percus-

Yevick scattering (red line). Dashed lines represent Α(N), for Lorentzian (grey) and Gaussian (black) models for g1. 

All scaling factors are calculated using a normal distribution for the number of scattering events in the vessel pN(n) 

for Hct = 22%, with mean N and variance determined by the Percus-Yevick pair correlation function (Supplementary 

equation 6). 
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VII - Microcirculatory flow mapping 

 

With conventional-SDF and SDF-LSCI images at multiple exposure times at hand, a quantitative blood flow map 

can be constructed. We applied the following steps:  

 

1. Raw speckle images were converted to K-images by calculating the ratio of standard deviation and mean 

intensity at each pixel from a local neighbourhood using a spatiotemporal local region of 7 x 7 (spatial) x 20 

(temporal) pixels.  

2. For each pixel in the K-image a multi-exposure curve fit is performed (with a priori estimated βM and ρ as 

fixed parameters, as described in Methods and Supplementary Section IIId) to estimate τc,total. 

3. To correct for offset decorrelation τc,offset is estimated as the average of the lowest 10% of pixels in the 

1/τc,total map and τc is calculated per pixel according to1: 

  
1 2

2 2
, , , ,  c c offset c total c offset c total         (13) 

An example of such 1/τc map (perfusion map) in false colour is shown in Fig. 7b (human, main paper) and 

Supplementary Fig. 6b (chick embryo).  

4. For selected vessels the diameter is estimated from the conventional-SDF images and N is estimated 

following Supplementary Fig. 4 based on Monte Carlo simulations of our measurement geometry.  

5. Selected vessels are manually masked based on conventional SDF images and 1/τc is corrected for multiple 

scattering according to 1/τc,1 = (1/τc)/Α(N), see Fig. 2 (human, main paper) and Supplementary Fig. 5 (chick 

embryo) 

6. The resulting map is represented in false colour to visualize the blood flow (Fig. 7c main paper and 

Supplementary Fig. 7c), using 1/τc,1 ≈ [0.38 ± 0.04]V (human) or 1/τc,1 ≈ [0.20 ± 0.07]V (chick embryo) 

 

This practical guide shows the feasibility of quantitative flowmetry. We identified the following revisions for 

enhanced performance. Step 3: The offset decorrelation correction would be improved if a site adjacent to each 

vessel is selected to estimate τc,offset. Step 4: The vessel diameter can vary along a vessel and at intersections, 

therefore an improved estimate of N can be obtained by measuring the diameter dynamically along the vessels. Step 

5: Vessel masking is done manually for selected vessels, automatic masking will be more complete and efficient.  

 

In Supplementary Movie 2 a video representation of Supplementary Fig. 6 is shown for the chick embryo 

microcirculation.  

 
Supplementary Fig. 6 | Blood flow mapping of chick embryo chorioallantoic membrane. (a) Conventional SDF 

image with contrast due to higher absorption of (green) light by RBCs than by tissue. Flows below 2 mm/s can be 

measured by RBC tracking. (b) 1/τc map of the same microcirculation region obtained with multi-exposure SDF-

LSCI with contrast due to perfusion dynamics (c) Map of LSCI-derived blood flow velocity after correction for 

τc,offset and A(N) (See Supplementary Fig. 5), and masking of selected blood vessel contours. The scale bar is 100 μm.   
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VIII - Theoretical prediction for α versus scatterer diameter (polystyrene spheres)  

 

 
Supplementary Fig. 7 | α versus size. Measurement and theoretical prediction for α in vitro versus scatterer 

diameter in logarithmic scale showing the saturation of α for small diameters. Error bars are 95% CI intervals. 

Theoretical α is derived using Mie-Percus-Yevick scattering approximations and the number of scattering events N 

as obtained from Monte Carlo simulations (N =1.2μsd) for the in vitro flow phantom setup. 

 

 

IX - In vivo determination of α without the offset-correction. 

 

 
Supplementary Fig. 8 | In vivo determination of α without the offset-correction. 1/τc,total versus V for RBCs in 

vivo, for (a) chick embryo and (b) human microcirculation. The top panels (green open circles) show 1/τc,total 

estimated by a multi-exposure curve fit (Supplementary Section IIId, equation 12), without subsequent offset 

correction. The bottom panels show 1/τc,1,total rescaled for the average number of scattering events N, using model 

based A(N). In both (a) and b) one data point was excluded as an outlier (not shown). Vertical error bars represent 

95% CI of the multi-exposure curve fit and horizontal error bars represent the standard deviation in reference flow 

velocity measurements from conventional SDF images. For the non-offset-corrected data, the slope, or α1, is 0.32 

and 1.1 for chick embryo respectively human RBCs, instead of α1 is 0.20 and 0.39 (offset corrected, chick embryo 

respectively human). The offset-corrected α1 thus approaches the theoretical prediction for α' much better 

(Theoretical α1 is 0.27 (chick embryo) respectively 0.38 (human) ), especially for the human data. Thus, the data 

show that for human sublingual microcirculation the offset-correction is essential. It is less important for chick 

embryo vessels, as they are embedded in a hardly scattering medium (egg-white) and have a low vessel density, 

resulting in long offset decorrelation times (Supplementary equation 13).   
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X - Experimental validation of Monte Carlo simulations  

 

The average number of scattering events N in the tube (phantom experiment) was estimated with Monte Carlo 

simulations (Supplementary Section IV), and yielded: N = Fµsd, with F = 1.2. We validate this estimation using 

experimental values of  (the fraction of detected photons that have been dynamically scattered). The probability of 

photons reaching the vessel is denoted c1. The probability of crossing the vessel with path length l without scattering 

events follows from Beer’s law as exp(–sl), where s is the scattering coefficient. Normalizing the path length on 

vessel diameter d using l=F∙d we obtain the probability for passing the vessel under the condition of one or more 

scattering events as [1–exp(–s F∙d)] so that ρ can be estimated as = c1 [1–exp(–s F∙d)]. In Supplementary Fig. 9 ρ 

is plotted for all in vitro measurements. The best fit yielded c1 = 0.83 and F = 0.95 [95% upper CI - lower CI: 0.81 - 

1.1], r2 = 0.83. Fixing F = 1.2 to match the Monte Carlo estimation resulted in r2 = 0.74. Both fits are plotted in 

Supplementary Fig. 9 and resemble the data. This analysis confirms our simulated estimate for N.  

 

 
Supplementary Fig. 9 | Fraction dynamically scattered light (ρ) versus scattering properties. The dashed line 

represents a curve fit of = c1 [1–exp(–s F∙d)]with fit parameters c1 = 0.83 and F = 0.95 (r2 = 0.83), or F = 1.2 (r2 = 

0.74) 
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XI – Influence of Gaussian approximation to K(T)   
 

The decorrelation time C is derived from the measurement of spatial speckle contrast K vs. integration time T by 

fitting an analytical model to the measurements. The model in Supplementary equation (12) assumes a Gaussian 

form of the autocorrelation function g1(τ) which we justify by the approximately Gaussian form of all distributions in 

the model: 
 

 The velocity distribution P(V) is assumed to Gaussian because of the randomization of the scattering vector 

q with respect to the flow velocity vector V. This assumption is not expected to hold all experimental 

geometries; e.g. for collimated incident light on a laminar flow profile. 

 The phase function p(q) is approximately Gaussian for particles with little refractive index difference from 

their suspended medium. For large particles with high refractive index contrast this assumption has limited 

accuracy. 

 The distribution of the number of scattering events is Poissonian for highly diluted samples. We assume a 

Gaussian distribution of n which will be less valid for small number of scattering events. 
 

We calculated g1(τ) and K(T) using our model for RBCs, and N = 1, 5 and 50 scattering events, respectively, yielding 

τc(1)=2.66 ms; τc(5)=0.78 ms and τc(50)=0.18 ms. Supplementary Fig. 10 shows both groups of curves simulated for 

a flow velocity V = 1 μm/ms. We then calculate g1(τ) and K(T) for the Gaussian ACF using the respective values for 

τc (Supplementary equation (8)). Subsequent scaling of the time-axes on τc causes these latter curves to overlap. For 

reference, g1(τ) and K(T) based on the Lorentzian model (appropriate when Brownian motion is considered) are also 

provided. The three forms of g1 are listed in the table next to Supplementary Fig. 10 and calculated for multiple 

scattering using supplementary equation (5) and a normal distribution for pN(n). The …q represents integration over 

the phase function. From the close resemblance of K(T) curves using our model of g1(τ) and that obtained from a 

Gaussian form with the same τc, we conclude that τc can be retrieved adequately using Supplementary equation (12). 

We note that this result does not imply that g1,single(τ) is Gaussian nor that the scaling factor based on this assumption 

should be used (A(N) ~ N, reference curve in Supplementary Fig. 5 and main paper Fig. 2). Rather, the K(T) curve 

at any number of scattering events can be fitted with Supplementary equation (12) to yield τc and model based 

rescaling to τc,1 follows from the Mie/PY curve in Supplementary Fig. 5 and main paper Fig. 2.  

 
Supplementary Fig. 10 | Theoretical modelling of g1(τ) and K(T) in the multiple scattering regime. g1(τ) and 

K(T) are theoretically calculated for the optical and geometrical properties of RBCs, for N = 1 (red), 5 (green) and 50 

(blue) scattering events, yielding τc = 2.66 ms, τc = 0.78 ms and τc = 0.18 ms for N = 1, 5, 50 respectively. Gaussian 

(solid line) and Lorentzian (dashed line) models with the same τc are also plotted. A flow velocity of V = 1 μm/ms 

was used in the calculation. The three forms of g1(τ) are listed in the table, where the …q represents integration over 

the phase function.  
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XII - Relation to Diffusing Wave Spectroscopy and Laser Doppler Flowmetry  

 

The model presented in Supplementary Section I is of similar form and origin as the theory for Diffusive Wave 

Spectroscopy (DWS)27,28 and for Laser Doppler flowmetry (LDF)8. Our model differs in two key areas with both. 

The first area covers the different approaches in deriving the ACF for single scattering events g1,single. Rather than 

carrying out the integration over the velocity distribution, leading from Supplementary equation (2) to 

Supplementary equation (3), DWS uses a cumulant expansion for short times  to bring the ensemble average into 

the exponential:  

 

  
 2 2 2

1,single
2 2 2

exp / 6 This work, Supplementary equation (4)

exp / 6 Diffusive Wave Spectroscopy, ref [21]
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  (14) 

Where the …q represents integration over the phase function. For DWS, q2q, evaluates to 2k0
2(1-g) where g is the 

average cosine of the scattering angle. Then, the scaling factor  ' between the inverse of the decorrelation time and 

flow velocity, 1/C = 1V becomes:   

 
1,DWS 0

1
(1 )

3
k g     (15) 

We note that the dependence on particle diameter and volume fraction is included in g. Using Supplementary Table 

I we find 'DWS  0.54 in the human microcirculation. The LDF framework proceeds to integrate Supplementary 

equation (14) over q, weighted by the form factor, which is equivalent to our weighting with the phase function. 

However, LDF uses the Rayleigh-Gans (RG) approximation to estimate the angular distribution of scattered light, 

whereas we use the more generically applicable Mie theory combined with Percus-Yevick equation to account for 

volume fraction effects. LDF8 proceeds to approximate the RG phase function by a Gaussian form leading to  

 1,

1

1.35
LDF

r
     (16) 

Where r is the particle radius. Our definition of c in Supplementary equation (8) differs from the definition by 

Bonner and Nossal8 who use ½, which is related to τc by 1 2 4ln 2c   . For comparisons reasons we adhere to 

our definition which explains the difference of the factor 1.35 with the factor 1.27 that is often cited in literature. For 

human blood we find LDF  0.26. 

 

The second key difference concerns how multiple scattering is treated. Our summation over the number of scattering 

events n is replaced by integration over the path length distribution p(l). The two quantities are related through 

l=n/s: 
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Expressions for p(l) can then be derived from e.g. the radiative transport equation28, or, similar to our approach, 

approximated from Monte Carlo simulations29. LDF assumes the Poissonian form of pN(n) to carry out the 

summation, thereby essentially limiting the range of validity to low volume fractions. Contrary to the coherent 

techniques discussed here, low coherence interferometry allows control over p(l), either coercing the experiment to 

single scattering30 or low-order scattering31. The latter work proposes an empirical correction to the assumed 

Poissonian form of p(l). Part of the correction is related to instrumental factors, part is attributed to volume fraction-

dependent effects on the optical properties (correctly so in our opinion for the reasons given in Supplementary 

section IIIc). The choice of pN (n) becomes of lesser influence as the mean number of scattering events N increases, 

because all forms of pN (n) eventually become Gaussian as per the Central Limit Theorem. 

  

XIII – Calculation of tissue perfusion using SDF-LSCI 

 

As described in the introduction, blood flow is the blood volume per unit time in the vasculature, and perfusion is the 

blood volume per volume tissue, per unit time. Therefore with the vessel diameters obtained from conventional SDF 

images the flow can simply be calculated as πr2V.  

 

Tissue perfusion can be calculate by the ratio of the fractional volume over the mean transit time of blood. In our 

case this can be obtained by the ratio of the total vessel volume over the field-of-view x depth-of-field, divided by 

the transit time, thus vessel length / velocity: 

 

2

2

fractional volume *Tissue Perfusion
mean transit time *

i i
i

i i
i

i

i i

r l

r V
FOV DOF

l FOV DOF
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

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

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  (18) 

where FOV, field-of-view, DOF, depth-of-focus, ri,li and Vi the radius, length and velocity of each vessel i in the 

image. Thus, in order to quantitatively measure tissue perfusion using laser speckle flowmetry, a quantitative 

relationship between τC and V needs to be established, as done in this Article using vessel diameters and their 

relationship to dynamic scattering events N.  

 

Supplementary Movie legends 
 

Supplementary Movie 1 (human) represents the analysis steps taken to generate a quantitative blood flow 

velocity map, as outlined in Supplementary Section VII. The top-left panel shows conventional SDF 

videos of the human microcirculation and the bottom-left panel shows speckle-contrast images of the 

same microcirculation area, calculated from raw laser speckle contrast images taken at different exposure 

times using Supplementary equation (10). The bottom-right image shows the decorrelation map, off-set 

corrected, generated using Supplementary equations (12) and (13). Estimation of vessel diameter and N is 

done using the conventional SDF images to apply 1/τc,1 = (1/τc)/Α(N), and subsequently, using 1/τc,1 ≈ [0.38 ± 

0.04]V, the blood flow velocity map is generated as shown in the top-right of the movie.  

 

Supplementary Movie 2 (chick embryo) represents the same steps as Supplementary Movie 1, for an area 

of the vascularised chorioallantoic membrane of the chick embryo grown ex ovo, and using 1/τc,1 ≈ [0.20 ± 

0.07]V in the final step.  
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